

Yr7 (ks3)	Topic Area	Knowledge/Skills that are taught	Knowledge /Skills revisited	What does good look like?	Resources/sup port at home
Autumn 1	Making generalisa tions about the number system 1	Students deepen their understanding of the base 10 (decimal) number system using manipulatives and place value grids. Column addition and subtraction are revisited to reinforce the role of 10. Understanding of the four main operators is checked whilst building on language of arithmetic including sum, product, difference, calculation, operator and operations. Fact families reveal connections between operators. Commutativity is illustrated with arrays and used to simplify calculations.		 Understand place value for integers and decimals – Be able to exchange between place value columns – Experience different representations of place value Understand what each of the basic operations means (+, -, × and ÷) – Be able to use the commutative property to simplify calculations – Experience representing and interpreting families of × and ÷ calculations with arrays and grouping models. Understand which operators are associative and which are not – Be able to decompose numbers to simplify calculations – Experience using a variety of mental multiplication methods that use commutativity, associativity and distributivity 	Mathswatch/ EEDI
		Associativity and distributivity are introduced and used for simplifying calculations. Representations are used throughout to help students to understand and to convince them of the properties. All three properties are used to equip students with a range of mental methods of multiplication. Students are introduced to factors and multiples in this unit and learn the divisibility		Understand what a factor and a multiple is – Be able to find factors of 2, 3, 5 and 10 – Experience using the precise mathematical language of factors, multiples and common multiples – Understand what a square number and prime number is – Understand the factor properties of integers, prime numbers and square numbers – Be able to list the factors of integers supported by appropriate representation –	

	rule for 3. They extend their understanding of multiples by finding common multiples of pairs of numbers using number patterns to deepen their understanding. They use bar models to support understanding of factors. Students explore factors pairs of integers and properties of prime and square numbers using arrays to support their understanding. 'Lots of' representations support connections to commutativity and associativity laying foundations for prime factor decomposition.	Experience decomposing and organising numbers based on their factors. – Understand equal and unequal order of priority between addition, subtraction, multiplication and division – Be able interpret and write calculations involving the four operations, indices and brackets – Experience connecting ordered calculations to a variety of contexts and representations	
	Students establish equal and unequal priority of the four operations and indices, and understand brackets as a tool to manipulate this order in more complex calculations.		
Autumn 2 Making generalisa tions about the number system 2	Negative numbers are visited in context that students may have experience them in everyday life. Number lines are used to order and add negative numbers by visiting familiar models. Subtraction and multiplication are looked at with negative numbers. Models from the	 Understand what a negative number is and how it is modelled on a number line – Understand that negative numbers have a value and an absolute value that are different – Be able to solve simple addition problems involving negative numbers. Understand how we can apply learning from addition to subtraction of negatives – Be able to subtract positive and negative numbers from positive and negative numbers from positive and negative numbers, including with the negative as a multiplier and multiplicand 	Mathswatch/ EEDI

	upon, especially for multiplication. This model is continued into Week 3 when multiplication and develop are looking at further.	 Be able to multiply and divide with negative numbers Understand how multiplication and division models apply to negative numbers Understand the connections between multiplication and division and deduce other known facts 	
	Multiplication and negatives numbers are the continued focus of this week, first looking more deeply looking at negative scale factors then looking at the inverse of multiplication: division.	 Understand that algebra is used to express mathematical structures, and that algebraic terms represent numbers that are unknown or variable – Be able to substitute (into), simplify, expand and factorise algebraic expressions. Understand what is meant by an equation and an inequality – Be able to manipulate equations and inequalities to form new equations and inequalities. 	
	Students are formally introduced to some algebraic notation that they will have seen throughout the previous term. Common conventions are introduced. Key representations seen throughout the first term are revisited.	 Be able to form expressions and inequalities in a new context – Be able to simplify and manipulate algebra in a new context – Experience generalising patterns and how algebra can be used to represent them. 	
	Students look are expressions and relational operators (e.g. =, <, >) to introduce equations and inequalities. The maintenance of balance (or equal imbalance) is looked at by performing the same operation on both sides of the equation or inequality.		

		Learning from the previous two weeks is consolidated through a lens of perimeter problems. The unit ends with students thinking about the generalised form, and comparing counting strategies that could be used to find the nth pattern.		
Spring 1	2-D Geometry	Students develop their understanding of the concept of angles as a measure of turn. Students have an opportunity to practise measuring and drawing angles before moving onto finding unknown angles around a point and in a straight line.	 Understand that one interpretation of angle is as a measure of turn – Experience generating equalities and inequalities using unknown angles – Be able to find missing angles around a point and in a straight line Understand that two parallel straight lines will never meet – Understand that two lines that are not parallel will meet exactly once – Be able to identify angles that are 	Mathswatch/ EEDI
		Students begin the week by developing their understanding of the properties of parallel lines. This is then developed through the rest of the week to introduce different angle rules involving parallel lines.	 equal and pairs of angles that sum to 180 degrees using angle rules in parallel lines Understand that symmetry, side length and angles can be used to compare and contrast triangles – Experience how different features of triangles follow from other features – Be able to find missing interior angles in a given triangle 	
		Students use rotational and reflectional symmetry to compare shapes before exploring this in the context of different types of triangles. Interior and exterior angles of triangles are introduced.	 Understand that a quadrilateral can be defined by side length and by how its diagonals intersect – Experience how to derive the interior angle sum for a quadrilateral from the interior angle sum of triangles – Be able to find missing interior angles in a given quadrilateral Understand how circle properties can be used to reason about the properties of other shapes – Be able to use a ruler and compasses to construct triangles – Understand 	

		Students explore the quadrilaterals that can be made using four line segments of equal length and pairs of equal length line segments. They also examine how the diagonals of a quadrilateral influence the shape.	which conditions lead to a non-unique triangle or a triangle that cannot be constructed – Understand how triangle constructions can be extended to constructing quadrilaterals – Be able to use ruler and compasses to construct quadrilaterals – Experience the properties of quadrilaterals in the context of constructions	
		This unit starts by looking at the properties of a circle and building understanding of how these properties can be used to construct shapes with equal side lengths. This is developed through the rest of the first week to develop understanding of the methods of constructing triangles.		
		The second week of this unit starts with more triangle constructions where an angle and two sides are given. Quadrilateral constructions are then introduced by first giving students circles with equally spaced dots before using compasses.		
Spring 2	The Cartesian plane	Students are introduced to coordinates in all four quadrants and connect coordinates with a distance travelled from the origin. They develop the idea of coordinates describing distances between points and identify the midpoint between two points and midpoints of line segements.	 Be able to use coordinates to identify a location on a 2-D plane – Understand that coordinates describe a 'journey' from the origin and that they describe a specific straight distance, either between the origin and a point, or between coordinates – Understand how to use the horizontal and vertical components of a line to identify the midpoint of a line and to identify lines that are equal in length. 	Mathswatch/ EEDI

Students begin to use quadrilaterals as a problem-solving context for developing their understanding of coordinates. They also use	– Be able to find the equation of a hori line – Understand how to create a proce reasoning skills students have develope Understand how the equations of horiz lines can form boundaries of shapes an symmetry. Experience using quadrilate problem-solving context for coordinate creating line segments of the same len out coordinates and then examining the the use of right appled triangles.	zontal or vertical f using the ed in week 1. – ontal and vertical d lines of rals as a s. – Experience gth through trying eir lengths through
segments to form proofs. Learning then moves on to finding the equations of horizontal and vertical lines.	 Understand that there are different used to describe perimeter or area – Be the perimeter of a polygon – Be able to of a different shapes by counting and a multiplying the width and length – Exp of combining shapes on the area and p 	nits which can be a able to calculate calculate the area rectangle by erience the effect erimeter
	 Be able to identify a rectilinear shape and perimeter. – Be able to use the for of a parallelogram and a triangle – Und both formulae the height is the dimens perpendicular to the base – Experience different types of triangles 	and find its area nulae for the area erstand that in ion which is finding areas of
Students are introduced to different forms of measure to represent perimeter and area. They calculate perimeters and areas of different 2D shapes and develop an understanding of the impact of increasing or decreasing the length of a dimension on the area.	 Be able to transform a 2-D shape through the state of transformation or reflection – Be able to descent transformation of a 2-D shape using the associated with translations, rotations. Understand that rotations, reflections as preserve size and shape but not always 	ugh translation, ibe the a language and reflections – and translations orientation.

		-		
		The concept of perpendicular lines is central to finding the area of a parallelogram and triangle so students start this week by examining rectilinear shapes. They develop	 Be able to describe the effects of combining transformations using a single transformation – Be able to enlarge a shape and describe an enlargement – Understand the effect of an enlargement on the area of a shape. 	
		their understanding of a perpendicular height through rearranging parallelograms into rectangles.		
		Students learn how to recognise, describe and perform translations, rotations and reflections on shapes. They learn which critical features need to be included in a description of the transformation and this is supported by their understanding of angles and shape properties.		
		Combined transformations are considered. Students are introduced to enlargements and also consider the effect of an enlargement on the area of a shape.		
Summer 1	Fractions	Students are introduced to the concept of prime factorisation by first building up	 Understand that all numbers can be expressed as a product of prime factors – Be able to express a number as 	Mathswatch/ EEDI

products of numbers before breaking down	a product of prime factors – Experience connecting a	
numbers using factor pairs. Familiar	numbers prime factorisation with different	
representations from unit 3 are used to help	representations	
develop understanding		
	 Be able to find the highest common factor and lowest 	
	common multiple by listing factors of two numbers – Be	
	able to use prime factorisation to find the HCF and LCM	
Students use their understanding of prime	of two numbers – Experience connecting HCF and LCM to	
factorisation to calculate the highest common	geometrical representations of number	
factor and lowest common multiple of a pair		
of numbers. For each calculation they first	– Understand that fractions describe equal parts of a	
explore the HCF and LCM through listing	whole – Understand that a fraction is also a division –	
factors of both numbers and are given	Understand that a fraction can be a part of one whole or	
opportunities to make connections to multiple	multiple wholes – Be able to describe the changing size of	
representations.	a fraction when the denominator or the numerator is	
	changed – Be able to calculate equivalent fractions.	
In this unit students are given an opportunity		
to revisit their foundational understanding of	 Understand how the size of fractions can be compared 	
fractions removed from the processes of	by comparing the denominators or the numerators or	
finding equivalent fractions and adding and	their distance from key quantities such as 1 or ½. – Be	
subtracting fractions that they may have	able to find equivalent fractions with a common	
already experienced.	denominator to compare fractions – Experience using	
	arrays to deepen understanding of decimal multiplication	
	 Be able to use different models including a 'lots of' 	
	model, a scaling model and an area model to represent	
	multiplication of fractions – Be able to multiply fractions	
	without a model – Be able to multiply decimal fractions –	
	Understand that multiplying by a unit fraction is the same	
Students start the first half of the week by	as dividing – Understand that when multiplying fractions	
using their conceptual understanding of	the answer can be smaller than the original amounts	
fractions to compare their sizes. They consider		
this through bar models and through their		

understanding of the numerator and the	- Understand that when dividing by a fraction, we	
denominator. They then use bar models to	multiply by the denominator and divide by the numerator	
compare fractions.	– Be able to divide a fraction by an integer – Be able to	
	divide a fraction by an fraction.	
Students are introduced to the multiplication of integers and fractions by both unit and non-unit fractions through a number of different models. They use this understanding to develop multiply fractions and decimal fractions without the use of models.	– Be able to add and subtract fractions with the same denominator – Be able to add and subtract fractions with a different denominator and find the lowest common denominator – Experience connecting fractions written using the lowest common denominator with the equivalent calculation written in its simplified form	
Students spend this week considering different linguistic frameworks that will support a deeper understanding of why we multiply the dividend by the denominator and divide by the numerator when dividing by a fraction. Students spend this week focusing on addition and subtraction of fractions and use the array and fraction walls to support their		
understanding of a common denominator.		

Summer 2	Ratio and	Students are introduced to ratios through a	 Be able to represent a multiplicative relationship 	Mathswatch/
	proportio	pictorial approach which allows them to share	between two or more numbers using ratio notation – Be	EEDI
	n	a given amount in different ways and examine	able to scale a ratio and recognise equivalent ratios –	
		different mathematical ways of describing the	Understand that the constant of proportionality is the	
		amounts. They use representations	multiplier within a ratio and will be the same between	
		throughout the week to examine	each pair of numbers in equivalent ratios – Understand	
		multiplicative relationships.	that the scale factor is the multiplier used to create an	
			equivalent ratio and can be any number.	
			 Understand the difference between the scale factor and 	
			the constant of proportionality in a geometrical context –	
			Understand the difference between part part	
			relationships and part whole relationships in geometrical	
			contexts – Be able to represent ratio problems with bar	
			models – Be able to share a quantity in a given ratio.	
		Students spend the first half of this week	- To understand what percentage is and how it can be	
		connecting their understanding of scale	represented – To be able to convert between fractions	
		factors and the constant of proportionality	decimals and percentages – To be able to calculate	
		firstly to enlargements of triangles and then to	percentage of amounts using a bar mode.	
		line segments and part of line segments. In		
		the second half of the week they learn to	 Understand bearing conventions and notation and 	
		share in a given ratio	relate it to prior knowledge of angles – Be able describe a	
			position using a bearing and direction – Experience	
			creating shapes and paths using bearings	
		This first week of the unit secures the		
		foundations of percentages; how one whole is		
		equivalent to one hundred percent, using		
		number lines, converting between fractions,		
		decimals and percentages, before beginning to		
		calculate percentage of amounts.		

		Students are introduced to bearings and consider how to work out and estimate bearings using a number of different representations. Students should build a sense that a bearing and distance describe a position.			
Yr8 (KS3)	Topic Area	Knowledge/Skills that are taught	Knowledge /Skills revisited	What does good look like?	Resources/sup port at home

Autumn 1	Equations	Growing patterns are used to emphasise	- Understand how the nth term formula connects to the	Mathswatch/
	and	adding the	common difference and 0th term – Be able to use the	EEDI
	inequaliti	common difference multiple times in order to	term-to-term rule and the position-to-term rule to	
	es	develop understanding of the nth term	generate a sequence – Experience sequences being	
		formula.	generated from patterns of counters and cubes	
			 Be able find the nth term of linear and non-linear 	
			sequences – Experience representing sequences	
			abstractly and pictorially	
		The nth term is focused on this week, with		
		students finding the nth term of increasing		
		and decreasing arithmetic sequences as well	Understand an alteria alexansia adationation. De alda	
		as quadratic sequences (using diagrams), and	– Understand equality in algebraic relationships – Be able	
		using the nth term to generate a range of	to solve simple linear equations – Experience	
		sequences (antimetic, quadratic and		
		geometric).	representations	
		Students establish the critical features of	– Understand algebraic relationships embedded within	
		expressions, equations and identities before	various contexts – Be able to form and solve linear	
		using pictorial representations to support the	equations with unknowns on both sides – Experience	
		algebraic manipulation in solving simple linear	representing and manipulating algebraic relationships	
		equations.		
			– Understand different representations of inequalities –	
			Be able to test and solve linear inequalities – Experience	
			manipulating and explaining different inequality	
		Students develop more versatile algebraic	representations	
		manipulation including solving linear		
		equations with negative coefficients and	- Understand inequalities as representations of numerical	
		unknowns on both sides, and applying	relationships from a range of contexts – Be able describe	
		algebraic reasoning in geometric contexts.	solve inequalities including with unknowns on both sides	
			 Experience manipulating inequalities and exploring the 	
			conditions for preservation of the relationship	
Sept 202	4-25			

		Students develop their understanding of inequalities from Year 7 to include number line representations, understanding when inequalities are or are not satisfied, and finding solutions to simple linear inequalities. Students form and solve inequalities based on geometric properties, contexts and pictorial representations, and experience manipulations that do and do not preserve		
		inequality relationships.		
Autumn 2	Graphical represent ations	Students start the unit on linear graphs by visiting and revisiting familiar contexts on the Cartesian plane, such as using coordinates, horizontal and vertical lines (from Year 7 content) and inequalities (previous unit). The focus this week is on connecting relationships between coordinates to the graphs of linear relationships. Gradient is introduced.	 Students start the unit on linear graphs by visiting and revisiting familiar contexts on the Cartesian plane, such as using coordinates, horizontal and vertical lines (from Year 7 content) and inequalities (previous unit). Understand a linear relationship can be recognised from a constant rate of change in the coordinates – Be able to identify the gradient of a line from its graph and from a set of coordinates – Experience connecting a linear equation to its graphical representation Understand a linear relationship can be described using algebra in the form y=mx+c – Be able to identify the equation – Experience moving between three representations of a linear relationship: coordinates, graphs and equations 	Mathswatch/ EEDI
		The equation of a line is considered in more depth this week culminating in students moving between the three representations of	 Understand rounding is a method of approximation – Be able round to decimal places and 'to the nearest' – Experience using rounded numbers to estimate 	

		a linear relationship (coordinates, graph and equation). Students use number lines to round to the nearest one, ten, hundred, thousand and to decimal places. They work backwards to see what a rounded number might have been and use rounding to estimate calculations. Students are introduced to significant figures, learning how to round to significant figures, deducing what a rounded number might have been and appreciating why there are different methods of rounding	 Understand how to identify significant figures – Be able round to a given number of significant figures – Experience using estimation to check calculations 	
Spring 1	Proportio nal reasoning	Before beginning work on real-life graphs and direct proportion, students revisit ratio. Students will look at previously learnt ratio topics, such as equivalence and sharing a quantity in a ratio, before exploring ratio and rates of change. Students connect prior learning of linearity and gradient to rates in real life contexts represented graphically.	 Understand the relationship between ratio and other proportional descriptors – Be able to use models and equivalence to solve ratio problems – Experience models and contexts relating to ratio Understand graphical representation of (changing) rate – Be able to interpret and express graphical linear and piecewise relationships – Experience describing, comparing and visualising changing rate Understand rate as one measure per another – Be able to contextualise speed and compare it in different 	Mathswatch/ EEDI

The week separates into two halves. Firstly, the focus is sharpened onto a specific example of 'rate' – speed. Then the unit ends looking at displacement-time graphs.	measures – Be able to read and draw displacement-time graphs – Understand multiplicative relationships – Be able to use scale factor and constant of proportionality independently to find missing values in directly proportional relationships – Experience different representations of the constant of proportionality, including gradient	
Students explore multiplicative relationships and balance, and revisit key concepts such as scale factor and constant of proportionality. As the week continues constant of proportionality is focused on as a key concept.	Be able to identify the scale factor and constant of proportionality for any two directly proportional measures (including non-integer values) – Understand key features of inversely proportional relationships – Be able to find missing values from directly and inversely proportional relationships, and state the constant of proportionality in each case – Be able to use algebraic notation to describe directly and inversely proportional relationships	
The week is divided in two. In the first two lessons students continue their work with direct proportion and learn methods for finding missing values with non-integer scale factors and constants of proportionality. In the second two lessons students meet		
Students compare directly and inversely proportional relationships before finding missing values and generalising. Finally, direct and inverse relationships emerge as different		

	parts of speed × time = distance are held constant.		
Spring 2 Represe ations a reasonin with dat	 Students are introduced to the fundamentals of data collection and analysis including question writing, classifying data, collecting data using tally charts, and interpreting data in bar and pie charts. Students are introduced to the fundamentals of data collection and analysis including question writing, classifying data, collecting data using tally charts, and interpreting data in bar and pie charts. Students are introduced to the fundamentals of data collection and analysis including question writing, classifying data, collecting data using tally charts, and interpreting data in bar and pie charts. Students are introduced to the fundamentals of data collection and analysis including question writing, classifying data, collecting data using tally charts, and interpreting data in bar and pie charts. Students continue looking at data, but develop learning to bivariate data and are introduced to key representations such as bar models. 	 Understand different types of data – Be able to interpret and represent data in different ways – Experience collecting and analysing data in multiple representations Understand the mean is a way of sharing out equally – Be able to use the mean to solve problems – Experience using different representations of data in mean problems. Understand mean, median, mode and range – Be able to find averages from different representations of data – Experience interpreting averages Understand that in bivariate data each data entry has 2 connected values – Be able to represent bivariate data with a scatter diagram, and to read data from a scatter diagram – Be able to identify trends in bivariate data and use mathematical language to describe trends. Understand how scatter graphs help make predictions about hypothetical data – Be able to find averages from scatter graphs – Experience mathematical reasoning to discuss correlations versus causation 	Mathswatch/ EEDI

		Students extend their understand of what bivariate data is, and how it can be represented, to this week where they make deductions from the data, such as predict non-existent data, find averages, and assessing causality.		
Summer 1	Angles	Students begin this unit revisiting concepts in more depth in preparations for Week 2 where they look at formal methods for finding the sum of angles in polygon. These lessons focus on issues like 'What is a polygon?' and 'What is an interior angle?" Students continue looking at compounded triangles, and are introduced to methods for finding the sum of interior angles of a polygon. Students also look at alternate methods and again look at what is and isn't an interior angle. Students are introduced to exterior exteriors, and look at interior and exterior angles within regular polygons. Opportunities for practice finding missing angles exist throughout the week. Formal angle notation is introduced. Students are introduced to bearings and consider how to work out and estimate bearings using a number of different representations. Students should build a sense	 Understand what is meant by a polygon, an interior angle, and develop a sense of an interior angle of a polygon. – Experience constructing and deconstructing polygons from triangles Understand how triangles can be used to find the sum of interior angles of polygons – Be able to find missing angles in polygons – Experience generalising methods using algebraic notation. Understand what an 'exterior angle' is and key features of them. – Be able to find the sizes of missing angles in polygons, including interior and exterior angles of regular shapes. – Be able to use angle notation conventions to describe angles. Understand bearing conventions and notation and relate it to prior knowledge of angles – Be able describe a position using a bearing and direction – Experience creating shapes and paths using bearings Be able to find missing angle problems involving bearings – Experience generalising and pattern spotting with bearings A from B and B from A – Understand how bearings can form part of a position description 	Mathswatch/ EEDI

		that a bearing and distance describe a position. Students continue their work on bearings in 2 new contexts. Firstly, students will formalise the relationship between A from B and B from		
		A, then students will look at how pairs of bearings, and bearings and loci can help find exact positions.		
Summer 2	Area, volume, and surface area	Students build on their understanding of circles as geometric 'tools' for constructing shapes of known side lengths to include calculating circumference and arc lengths Students extend their understanding of Pi to include being the ratio between the square of a circle's radius and it's diameter before calculating area and perimeter of varied sectors and compound shapes.	 Understand Pi as the ratio between diameter and circumference – Be able to calculate circumference and arc lengths in perimeter problems – Experience reasoning geometrically using the features of circles Understand Pi as the ratio between radius squared and circumference – Be able work out area of circles, sectors and compound shapes – Experience reasoning geometrically using circle properties Understand solid shapes have three dimensions – Be able find the surface area of a cube and cuboid – Experience visualising 3-D shapes from 2-D representations and nets 	Mathswatch/ EEDI
		Students learn the vocabulary to investigate properties of solid shapes. They are challenged to develop their visualisation skills throughout the unit, this week working with 2-D representations and nets.	 Understand what a prism is – Be able to calculate the surface area of a prism – Experience visualising prisms from 2-D representations and nets Understand the concept of volume – Be able to calculate the volume of prisms – Experience visualising constructing and deconstructing prisms 	

Students are introduced to the idea of a prism. They use their knowledge of nets to identify cross sections and calculate surface area of prisms and cylinders.		
Students are introduced to the concept of volume. They connect units of measurement to dimensions and learn how to calculate the		
volume of a prism by multiplying cross-sectional area by length.		