Yr 9 (KS4)	Topic Area	Knowledge and skills that are taught	Knowledge/Skills revisited	What does good look like?	Resources/support at home
Autumn 1	Algebra	Algebraic Manipulation		Algebra basics: understand notation and correct language, add/subtract/multiply/divide expressions, collect like terms, simplify, index laws, substitution	Resources used in lessons and revision materials uploaded on GC. Mathswatch Assignments
				Use instances of index laws, including use of zero, fractional and negative powers	
				Multiply a single term over a bracket	
				Factorise by taking out a common factor	
				Expand the product of two linear expressions	
				Factorise quadratic expressions of the form $\mathrm{x} 2+\mathrm{bx}+\mathrm{c}$;	
		Solving Equations		Set up and solve linear equations: including equations with unknowns on both sides, containing brackets, containing negative coefficients, containing fractional coefficients	
				Change the subject of a simple formula, i.e. linear one-step, such as $x=$ 4y;	
				Change the subject of a formula, including cases where the subject is on both sides of the original formula, or involving fractions and small powers of the subject;	
				Use iteration to find approximate solutions to equations, for simple equations in the first instance, then quadratic and cubic equations.	
				Use iteration ($x _n+1=2+1 / x _n$) to find approximate solutions to an equation to a certain degree of accuracy	

		Inequalities		
				Show inequalities on number lines;
				Construct inequalities to represent a set shown on a number line;
				Write down whole number values that satisfy an inequality;
				Solve simple linear inequalities in one variable, and represent the solution set on a number line;
				Solve two inequalities in x, find the solution sets and compare them to see which value of x satisfies both;
		Sequences		Recognise simple sequences including at the most basic level odd, even, triangular, square and cube numbers and Fibonacci-type sequences
				Generate sequences of numbers and describe in words a term-to-term sequence or position-to-term sequence
				The nth term of an arithmetic sequence;
				Continue a quadratic sequence and use the nth term to generate terms
				Find the nth term of quadratic sequences
				Distinguish between arithmetic and geometric sequences
				Recognise and use simple geometric progressions
				Continue geometric progression and find term to term rule, including negative, fraction and decimal terms;
				Solve problems involving sequences from real life situations.
Autumn 2	Fractions, Decimals, Percentag es + Ratio	Basic FDP		Convert between fractions, decimals and percentages
				Compare and order fractions, decimals and integers
				Convert recurring decimals into their corresponding fractions and vice versa

and Surds		Apply the four operations to integers, decimals and fractions (including mixed) - all both positive and negative Use standard units of mass, length, time, money and other measures (including standard compound measures) using decimal quantities where appropriate Find the reciprocal of an integer, decimal or fraction. I can change freely between related standard units (e.g. time, length, area, volume/capacity, mass) and compound units (e.g. speed, rates of pay, prices, density, pressure) in numerical and algebraic contexts
		Find a fraction or percentage of an amount
		Express a given number as a fraction of another
		Work out the original value before a fraction of an amount is given
	Fr	Express one quantity as a percentage of another and calculate percentage change
	Quantities	Increase and decrease by a given percentage using calculator (multiplier) and non-calculator methods
		Work out the original value before a given percentage change
		Simple interest
		Compound interest and depreciation
	Ratio and Proportion	Ratio basics: identify a ratio from picture, equivalent ratios, simplify ratios, express in the form 1:n or $\mathrm{n}: 1$
		Work with fractions in ratio problems
		Convert between ratios and linear functions
		Share a quantity in a ratio, given the total, one part of the ratio or the difference
		Combine 2 two-part ratios into a single three-part ratio

| | | | Draw distance-time and velocity-time graphs;
 I can calculate or estimate gradients of graphs and areas under graphs
 (including quadratic and non-linear graphs). |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | |
| | | | |
| velocity-time graphs. | | | |

Yr 10 (KS4)	Topic Area	Knowledge and skills that are taught	Knowledge/Skill s revisited	What does good look like?	Resources/support at home
Autumn 1	Trigonome try and Shape	Area and perimeter		Perimeter of regular 2D shapes and compound shapes	
				Area of a trapezium and a parallelogram	
				Surface area of a prism	
				Circumference of a circle	
				Area of a circle	
				Use the π button on a calculator; and keep answers in terms of π	
				Surface area of a cylinder	
				Calculate perimeters and areas of composite shapes made from circles and parts of circles (including semicircles, quarter-circles, combinations of these and also incorporating other polygons);	
				Calculate arc lengths, angles and areas of sectors of circles;	
				Pythagoras' Theorem in 2D: find missing sides in a right-angled triangles	

Pythagoras

				Given three sides of a triangle, justify if it is right-angled or not.
				I can give an answer to the use of Pythagoras' Theorem in surd form
		Trigonometry		Use the trigonometric ratios sine, cosine and tan to find angles and lengths in right angle triangles
				Use the trigonometric ratios to solve 2D problems
				Find angles of elevation and depression in problem-solving questions
				Apply trigonometry and pythagoras in 3D shapes
				Know and apply Area $=\mathrm{ab} \sin \mathrm{C}$ to calculate the area, sides or angles of any triangle.
				Know the sine and cosine rules, and use to solve 2D problems (including involving bearings).
				Use the sine and cosine rules to solve 3D problems.
		Bearings		Calculate bearings and solve bearings problems, including on scaled maps, and find/mark and measure bearings
				Apply trigonometry in the context of bearings
Autumn 2	Algebra 2	Quadratic equations		Define a 'quadratic' expression
				Factorise quadratic expressions of the form $\mathrm{x} 2+\mathrm{bx}+\mathrm{c}$;
				Factorise a quadratic expression $\times 2-\mathrm{a} 2$ using the difference of two squares;
				Solve quadratic equations by factorising
				I can generate points and plot graphs of simple quadratic functions, then more general quadratic functions

Work out which product offers best value and consider rates of pay; Work out the multiplier for repeated proportional change as a single decimal number;
Represent repeated proportional change using a multiplier raised to a power, use this to solve problems involving compound interest and depreciation;
Understand and use compound measures and: convert between metric speed measures;
convert between density measures;
convert between pressure measures;
Calculate an unknown quantity from quantities that vary in direct or inverse proportion;
Recognise when values are in direct proportion by reference to the graph form, and use a graph to find the value of k in $y=k x$;
Set up and use equations to solve word and other problems involving direct proportion

Relate algebraic solutions to graphical representation of the equations;
Recognise when values are in inverse proportion by reference to the graph form;
Set up and use equations to solve word and other problems involving inverse proportion, and relate algebraic solutions to graphical representation of the equations.
Use kinematics formulae from the formulae sheet to calculate speed, acceleration, etc (with variables defined in the question);
I can solve problems involving direct proportion, including graphical and algebraic representations; Use $\mathrm{y}=\mathrm{kx}$ to solve direct proportion

fortismere

Maths KS4 Curriculum Map 2023-24

| Yr 11 (KS4) | Topic Area | Knowledge and skills
 that are taught | Knowledge/Skil
 Is revisited | What does good look like? |
| :--- | :--- | :---: | :--- | :--- | :--- |
| Autumn1 | Algebra3 | Quadratic equations | | I can define a 'quadratic' expression and multiply together two algebraic
 at home |

		I can square a linear expression ($x+1$)2
		I can factorise quadratic expressions of the form $\mathrm{x} 2+\mathrm{bx}+\mathrm{c}$;
		I can factorise a quadratic expression $\mathrm{x} 2-\mathrm{a} 2$ using the difference of two squares;
		I can solve quadratic equations by factorising
		I can generate points and plot graphs of simple quadratic functions, then more general quadratic functions
		I can find approximate solutions to quadratic equations using a graph
		I can interpret graphs of quadratic functions from real-life problems
		I can identify the line of symmetry of a quadratic graph and interpret roots, intercepts and turning points of quadratic graphs.
		I can factorise quadratic expressions in the form ax2 $+\mathrm{bx}+\mathrm{c}$
		I can solve quadratic equations by factorisation and completing the square
		I can solve quadratic equations that need rearranging
		I can set up and solve quadratic equations (problem-solving)
		I can solve quadratic equations by using the quadratic formula
	Solving equations, inequalities, simultaneously	I can use elimination or substitution to solve simultaneous equations (where both equations are linear)
		Solve exactly, by elimination of an unknown, two simultaneous equations in two unknowns: linear / linear, including where both need multiplying; linear / quadratic; linear / x2 + y2 = r2;
		I can set up and solve a pair of linear simultaneous equations in two variables, including to represent a situation and interpret the solution in the context of the problem
		I can show inequalities on number lines

Find the equation of the line through two given points.
Plot and draw graphs of $y=a, x=a, y=x$ and $y=-x$, drawing and
recognising lines parallel to axes, plus $y=x$ and $y=-x$;
Identify and interpret the gradient of a line segment; Identify and interpret the gradient and y-intercept of a linear graph given by equations of the form $y=m x+c$;
Find the equation of a straight line from a graph in the form $y=m x+c$; Plot and draw graphs of straight lines of the form $y=m x+c$ with and without a table of values;
Interpret and analyse a straight-line graph and generate equations of lines parallel and perpendicular to the given line;
Find the equation of a straight line from a graph in the form $a x+b y=c$; Plot and draw graphs of straight lines in the form $a x+b y=c$;
Interpret and analyse information presented in a range of linear graphs:
use gradients to interpret how one variable changes in relation to another;
find approximate solutions to a linear equation from a graph;
identify direct proportion from a graph;
find the equation of a line of best fit (scatter graphs) to model the relationship between quantities and comment on its practical implications
Recognise a linear, quadratic, cubic, reciprocal and circle graph from its shape;
Generate points and plot graphs of simple quadratic functions, then more general quadratic functions;
Find approximate solutions of a quadratic equation from the graph of the corresponding quadratic function;

Interpret graphs of quadratic functions from real-life problems;
Draw graphs of simple cubic functions using tables of values;

				ratio.
				Produce geometrical proofs to prove points are collinear and vectors/lines are parallel.
				Recognise, sketch and interpret graphs of the reciprocal function (with x $\neq 0$) and state the value of x for which the equation is not defined;
				Recognise, sketch and interpret graphs of exponential functions $y=k x$ for positive values of k and integer values of x;
				Set up, solve and interpret the answers in growth and decay problems;
		Graph transformations		Interpret and analyse transformations of graphs of functions and write the functions algebraically, e.g. write the equation of $f(x)+a$, or $f(x-a)$:
		(Higher Only)		apply to the graph of $y=f(x)$ the transformations $y=-f(x), y=f(-x)$ for linear, quadratic, cubic functions;
				apply to the graph of $y=f(x)$ the transformations $y=f(x)+a, y=f(x+a)$ for linear, quadratic, cubic functions;
				Apply to the graph of $y=f(x)$ the transformations $y=-f(x), y=f(-x)$ for sine, cosine and tan functions $f(x)$.
				Apply to the graph of $y=f(x)$ the transformations $y=f(x)+a, y=f(x+a)$ for sine, cosine and tan functions $f(x)$.
				Estimate area under a quadratic or other graph by dividing it into trapezia;
				Interpret the gradient of linear or non-linear graphs, and estimate the gradient of a quadratic or non-linear graph at a given point by sketching the tangent and finding its gradient;
				Interpret the gradient of non-linear graph in curved distance-time and velocity-time graphs:
		Rates of change (Higher Only)		for a non-linear distance-time graph, estimate the speed at one point in time, from the tangent, and the average speed over several seconds by finding the gradient of the chord;
				for a non-linear velocity-time graph, estimate the acceleration at one point in time, from the tangent, and the average acceleration over several seconds by finding the gradient of the chord;
				Interpret the gradient of a linear or non-linear graph in financial contexts;

		Interpret the area under a linear or non-linear graph in real-life contexts;
		Interpret the rate of change of graphs of containers filling and emptying;
		Interpret the rate of change of unit price in price graphs.
Spring 1	Coordinate geometry with circles	Select and apply construction techniques and understanding of loci to draw graphs based on circles and perpendiculars of lines;
		Find the equation of a tangent to a circle at a given point, by:
		- finding the gradient of the radius that meets the circle at that point (circles all centre the origin);
		- finding the gradient of the tangent perpendicular to it;
		- using the given point;
		Recognise and construct the graph of a circle using $x 2+y 2=r 2$ for radius r centred at the origin of coordinates.
		Recognise, sketch and interpret graphs of the reciprocal function with $x \neq$ 0
		State the value of x for which the equation is not defined;
		Recognise, sketch and interpret graphs of exponential functions $y=k x$ for positive values of k and integer values of x;
		Use calculators to explore exponential growth and decay;
		Set up, solve and interpret the answers in growth and decay problems;
		Interpret and analyse transformations of graphs of functions and write the functions algebraically, e.g. write the equation of $f(x)+a, \operatorname{or} f(x-a)$:
		apply to the graph of $y=f(x)$ the transformations $y=-f(x), y=f(-x)$ for linear, quadratic, cubic functions;
	Functions	apply to the graph of $y=f(x)$ the transformations $y=f(x)+a, y=f(x+a)$ for linear, quadratic, cubic functions;
		Estimate area under a quadratic or other graph by dividing it into trapezia;

[^0]

fortismere

Maths KS4 Curriculum Map 2023-24

[^0]: Rates of change

